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Abstract
We present a different approach to dealing with integral equations developed to
tackle the scattering by obstacles of scalar harmonic waves. The consistency of
this approach is made evident by proving that classical results are obtained for
the scattering of harmonic plane and spherical waves on perfectly reflecting
planes and cylinders. Then, this approach illustrated on the scattering of
harmonic waves by obstacles with a surface impedance supplies a Fredholm-
like equation whose solution is obtained by using the Rayleigh–Gans iterative
process.

PACS numbers: 0230R, 0230G, 4120J, 4225, 4320E

1. Introduction

Integral equations with Green functions as kernels are used in physics to investigate the
scattering by obstacles of acoustic, optical and electromagnetic waves when the boundary
conditions on the total field (incident plus scattered on the obstacle S) are known [1–4]. They
were developed by Weber and Helmholtz, respectively, for two-dimensional (2D) and three-
dimensional (3D) problems [1, 2] and applied to the scattering of scalar harmonic fields. But
while this formulation is largely based, at least for 3D problems, on the Huygens principle [5],
integral equations are also a tool for solving boundary value problems of partial differential
equations [6] leading to some kind of Fredholm equation. This is the way that the integral
formulation is used in this work to analyse the scattering of scalar harmonic waves, solutions
of the Helmholtz equation, by a plane and by a circular cylinder. The consistency of this
approach is checked for harmonic plane and spherical waves incident on a perfectly reflecting
smooth plane. Then, an application to scattering by impedance planes is developed, a problem
which has been the object of many works in electromagnetism [7, 8] and acoustics [9] and
which leads here to a Fredholm-like integral equation. The solution of this equation requires
some method of successive approximations [6] among which the Rayleigh–Gans iterative
process [1], also known as the Born approximation in quantum mechanics, is the most suitable.
The comparison between Fredholm and conventional approaches to scattering is also discussed
from a theoretical point of view, but at this stage of the investigation, only simple numerical
calculations are made, further works are needed in this domain.
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2. A different approach to dealing with integral equations

2.1. Plane obstacle

To avoid later confusion, we clarify some notation: x(xy, z) and x′(x ′, y ′, z′) denote,
respectively, the action and point sources in the Green functions, while the surface S is written
as �, �′, for the action and source points, respectively.

From the scalar Helmholtz equations for the field ψ and for the Green function G:

�ψ(x) + k2ψ(x) = 0 �G(x,x′) + k2G(x,x′) = −4πδ(x − x′) (1)

in which � is the Laplacian operator and δ is the Dirac distribution, we obtain for a solution
ψ inside a volume V the integral equation

ψ(x) =
∫
V

dx ′ [G(x,x′)�ψ(x′)− ψ(x′)�G(x,x′)]. (2)

The Green theorem transforms (2) into

ψ(x) =
∫
S

ds [G(x,x′) ∂nψ(x′)− ψ(x′)∂nG(x,x′)] (3)

in which ∂n is the outward normal derivative to the surface S bounding the volume V , ψ andG
satisfying some boundary condition on S. For a plane S located at z = 0, −∞ < x, y < ∞,
equation (3) becomes

ψ(x) =
∫ ∫ ∞

−∞
dx ′ dy ′ [G(x,x′) ∂z′ψ(x′)− ψ(x′)∂z′G(x,x′)]z′=0. (4)

When equation (4) is applied to scattering,ψ(x) is considered as the total incident plus scattered
field

ψ(x) = ψi(x) + ψs(x) (5)

and when S is a perfectly reflecting smooth plane, ψ and G satisfy on the �-plane, z = 0, the
Dirichlet or the Neumann boundary conditions (soft or hard in acoustics)

[ψ(x)]� = 0 [GD(x,x
′)]� = 0 (6a)

[∂zψ(x)]� = 0 [∂zGN(x,x
′)]� = 0 (6b)

so that we obtain from (4) the two Fredholm-like integral equations

ψ(x) =
∫ ∫ ∞

−∞
dx ′ dy ′ [GD(x,x

′)∂z′ψ(x′)]z′=0 (7a)

ψ(x) = −
∫ ∫ ∞

−∞
dx ′ dy ′ [ψ(x′)∂z′GN(x,x

′)]z′=0. (7b)

Both equations are valid for z > 0 (respectively, z < 0) corresponding to the incident field
propagating in the region z > 0 (respectively, z < 0). Now, let G(x,x′) denote the free-space
Green function of the Helmholtz equation: using the Weyl representation [10, 11] we obtain

G(x,x′) = (
i/8π2

) ∫ ∞

−∞
dγ

∫ ∞

−∞
dβ k−1

z exp[iβ(x − x ′) + iγ (y − y ′) + ikz|z − z′|] (8a)

kz = (
k2 − β2 − γ 2

)1/2
(8b)

and GD,N are obtained from G by the method of images [1–4]: let ξ(x, y,−z) be the image
point of x with respect to the �-plane z = 0, then

GD(x,x
′) = G(x,x′)−G(ξ,x′) GN(x,x

′) = G(x,x′) + G(ξ,x′) (9)
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which allows us to determine the integral equations (7a) and (7b).
The integral equation (7a) (respectively, (7b)) concerns pseudoscalar (respectively, scalar)

waves: in the former case, relation (5) becomes ψ = ψi − ψr and in the latter ψ = ψi + ψr ,
in which ψr denotes the reflected wave.

Let us now make clear the differences between the present approach and the conventional
one in which to avoid confusion we denote the Green functions by g. The total field ψ still
satisfies the boundary conditions (6a) and (6b), while the corresponding boundary conditions
for gD,N are now given on the �′-plane z′ = 0 and no longer on �,

[gD(x,x
′)]�′ = 0 [∂zgN(x,x

′)]�′ = 0 (10)

supplying from (4) the two integral equations

ψ(x) = ψi(x) +
∫ ∫ ∞

−∞
dx ′ dy ′ [gN(x,x

′) ∂z′ψs(x
′)]z′=0 (11a)

ψ(x) = ψi(x)−
∫ ∫ ∞

−∞
dx ′ dy ′ [ψs(x

′)∂z′gD(x,x
′)]z′=0 (11b)

in which gD,N are obtained from the free-space Green function g, still by the method of images
but now taken with respect to the �′-plane z′ = 0 so that with ξ ′(x ′, y ′; −z′) we obtain

gD(x,x
′) = g(x,x′)− g(x, ξ ′) gD(x,x

′) = g(x,x′) + g(x, ξ ′) (12)

where g is the spherical wave (a heritage of the Huygens principle)

g(x,x′) = (1/4π) exp(ik|x − x′|)/|x − x′|. (12a)

If ψi(x) or ∂zψi(x) is known on the plane z = 0, then using the boundary conditions (6a)
and (6b), the expressions of ψs(x

′) to be introduced in the integrand of (11a) and (11b) are
also known (an excellent discussion is given in [2]). So, strictly speaking, equations (11a) and
(11b) are not integral equations, but they are solutions of the Helmholtz equation in an integral
form. Otherwise, to obtain ψs(x

′), one has to deal with an inhomogeneous Fredholm integral
equation of the second kind as discussed in section 3.1.2.

2.2. Cylindrical obstacle

When the obstacle S is a circular cylinder of radius a, the boundary conditions (6a) and (6b)
become with r = (r, φ) (we leave aside the case of a parabolic cylinder which could be
analysed in the same way)

ψ(r)|r=a = 0 G(r, r′)|r=a = 0 (13a)

∂rψ(r)|r=a = 0 ∂rG(r, r
′)|r=a = 0 (13b)

and the integral equations outside the cylinder are

ψ(r) =
∫ 2π

0
a dφ′ [GD(r, r

′) ∂r ′ψ(r′)]r ′=a r � a

ψ(r) = −
∫ 2π

0
a dφ′ [ψ(r′) ∂r ′GN(r, r

′)]r ′=a r � a.

(14)

The free-space Green function G(r, r′) is the expansion of the Hankel function
i/4πH(1)

0 (k|r − r′|) [3] in terms of Bessel and Hankel functions Jm, Hm (written for H(1)
m )

with ε0 = 1 and εm = 2 for m � 1,

4iπG(r, r′) =
∞∑
m=0

εm cos[m(φ − φ′)] Jm(kr ′)Hm(kr) r > r ′. (15)
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From now on, we write
∑

for
∑∞

m=0 (not to be confused with the plane �) and

Cm = εm cos[m(φ − φ′)]. (15a)

Then, we look for GD in the form [6]

GD(r, r
′) = G(r, r′) + γ (r, r′) (16)

in which γ (r, r′) is a solution of the 2D Helmholtz equation (∂2
r + r−1∂r + r−2∂2

φ +
k2)γ (r, r′) = 0 such that the expression (16) satisfies the boundary condition (13a). The
convenient solutions are

γ (r, r′) =
∑

amCmJm(kr
′) Jm(kr). (17)

Taking into account (17) and substituting (16) into (13a) gives the amplitudes am and we obtain

GD(r, r
′) = i/4π

∑
CmJm(kr

′)[Hm(kr)− Jm(kr)Hm(ka)/Jm(ka)] r � r ′ (18a)

and similarly

GN(r, r
′) = i/4π

∑
CmJm(kr

′)[Hm(kr)− Jm(kr)H
′
m(ka)/J

′
m(ka)] r � r ′ (18b)

in which H ′ and J ′ are the derivatives of the Hankel and Bessel functions.

2.3. Consistency of Fredholm integral equations

To check the consistency of this approach, we consider a scalar harmonic plane wave (the time
dependence exp(iωt) is implicit) impinging from the region z < 0 on the z = 0 plane,

ψi(x) = exp[ik(x sin θ cosφ + y sin θ sin φ + z cos θ)] (19)

so that, according to the Descartes–Snell law, the reflected field is

ψr(x) = exp[ik(x sin θ cosφ + y sin θ sin φ − z cos θ)]. (19a)

Since ψi is a scalar the total field ψ is ψi + ψr and one has to check that ψ is a solution of
equation (7b).

Now, according to (19) and (19a), we obtain

[ψ(x′)]z′=0 = 2 exp[ik(x ′ sin θ cosφ + y ′ sin θ sin φ] (20)

while from (8) and (9)

GN(x,x
′) = (i/8π2)

∫ ∫ ∞

−∞
dβ dγ k−1

z exp[iβ(x − x ′) + iγ (y − y ′)]

×{exp[ikz|z − z′|] + exp[ikz|z + z′|]} (21)

and a simple calculation gives

∂z′GN(x,x
′) = −(1/8π2)

∫ ∫ ∞

−∞
dβ dγ exp[iβ(x − x ′) + iγ (y − y ′)]

×{exp[ikz|z − z′|]∂z′ |z − z′| + exp[ikz|z + z′|]∂z′ |z + z′|} (21a)

and using the relations (z is negative for the action point and positive for its image)

|z − z′|z′=0 = −z [∂z′ |z − z′|]z′=0 = 1 z < 0

|z + z′|z′=0 = z [∂z′ |z + z′|]z′=0 = 1 z > 0
(22)

we obtain

[∂z′GN(x,x
′)]z′=0 = −(

1/4π2
) ∫ ∫ ∞

−∞
dβ dγ exp[iβ(x − x ′) + iγ (y − y ′)] cos(kzz). (23)
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Substituting (20) and (23) into the right-hand side of (7b) gives∫ ∫ ∞

−∞
dx ′ dy ′ [ψ(x′)∂z′GN(x,x

′)]z′=0

= (−1/2π2
) ∫ ∫ ∞

−∞
dβ dγ exp(iβx + iγy) cos(kz)F (β, γ ) (24)

F(β, γ ) =
∫ ∫ ∞

−∞
dx ′ dy ′ exp[−ix ′(β + k sin θ cosφ)− iy ′(γ + k sin θ sin φ)]

= 4π2δ(β + k sin θ cosφ)δ(γ + k sin θ sin φ) (24a)

where δ is the Dirac distribution. Substituting (24a) into (23) and using the definition (8b) of
kz we obtain∫ ∫ ∞

−∞
dx ′ dy ′ [ψ(x′)∂z′GN(x,x

′)]z′=0 = −2
∫ ∫ ∞

−∞
dβ dγ exp(iβx + iγy)

× cos(kz)δ(β + k sin θ cosφ)δ(γ + k sin θ sin φ)

= −2 exp[ik(x sin θ cosφ + y sin θ sin φ] cos(kz) (25)

which is −ψ(x) according to the left-hand side of (7b) and proves the correctness of the
Fredholm integral equation. The consistency of this approach for spherical waves incident on
a plane mirror is shown in appendix A, and the case of plane waves impinging on a circular
cylinder is also easily tackled.

Now that the consistency of this integral equation approach is checked we may investigate
scattering problems on a plane with a surface impedance which has been the object, as
mentioned in the introduction, of many works in electromagnetism [7,8] and in acoustics [9].

2.4. Numerical application

A numerical evaluation of the 2D integral equation

ψ(x, z) = (1/2π)
∫ ∞

−∞
dβ exp(iβx) cos(kzz)F (β)

F (β) =
∫ ∞

−∞
dx ′ exp(−iβx ′)ψ(x ′, 0)

is made when the total field on the �′-plane is the Gaussian function exp(−x ′ 2/d2),
corresponding to an incident Gaussian beam and kz = (d2 − β2)1/2. See tables 1 and 2.
The calculations present no particular difficulties.

Table 1. x and z data for d = 1.

x (m)

z (km) 1
2 1 2

0.1 0.690 0.321 −0.2268
0.5 0.689 0.190 −0.2260
1 0.642 −0.434 −0.1760
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Table 2. x and z data for d = 2.

x (m)

z (km) 0 1 2

0.1 0.870 −5.49 × 10−3 −0.120
0.5 0.527 −5.59 × 10−3 −0.090
1 0.023 −5.38 × 10−3 −8.95 × 10−3

3. Scattering by impedance planes

3.1. TM electromagnetic plane wave

As is well known [14,15], when the electromagnetic field does not depend on one coordinate,
say y, the Maxwell equations divide into two independent sets supplying the TM and TE
components which can be obtained in terms of a scalar solution of the 2D Helmholtz equation.
Introducing the variable u(x, z) the boundary conditions (6a) and (6b), and the integral
equations (7a) and (7b) are still valid with ψ(u) and GD,N(u,u

′) when S is a perfectly
conducting smooth plane, one has just to set y = 0 and γ = 0 in these relations.

Suppose now that a TM harmonic plane wave (still with exp(iωt) implicit)

ψi(u) = exp[−iω/c(x sin θ + z cos θ)] (26)

impinges from the region z < 0 on a surface impedance sheet located at z = 0 and obtained
by coating a perfectly conducting plane with a thin layer of a dielectric with thickness d and
permittivity ε. The face z = 0+ is covered with dielectric, the face z = 0− is in free space and
the face z = d is perfectly conducting (figure 1).

3.1.1. Fredholm integral equation. To get the Fredholm integral equation satisfied by the
total field ψ(u) one has first to obtain the boundary conditions on the face z = 0. Inside the
dielectric, Maxwell’s equations for a TM harmonic field

∂zHy = −ic−1ωεEx ∂xHy = ic−1ωεEz ic−1ω∂tHy = ∂xEz − ∂zEx (27)

have the following solution satisfying the Neumann boundary condition ∂zHy = 0 on the face
z = d of the layer:

Hy = exp[i(ωt − χxx) cos[χz(z − d)]

Ex = −(ic/ωε)χz exp[i(ωt − χxx)] sin[χz(z − d)]
(28)

with

χ2
x + χ2

z = εk2 k = ω/c. (28a)

Now, in free space (ε = 1), we may write the components Hy , Ex , of the TM field

Hy = exp[i(ωt − kxx)][A exp(ikzz) + B exp(−ikzz)]

Ex = (c/ω)kz exp[i(ωt − kxx)][A exp(ikzz)− B exp(−ikzz)]
(29)

with

k2
x + k2

z = k2 (29a)

in which the amplitudes A and B, are obtained from the continuity conditions

(Hy)z=0+ = (Hy)z=0− (Ex)z=0+ = (Ex)z=0− . (30)
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Figure 1. Reflection at an impedance plane.

Substituting (28) and (29) into (30), we first obtain the Descartes–Snell condition kx = χx and
then the two relations

A + B = cos(χzd) A− B = i(χz/εkz) sin(χzd). (31)

From (29) and (30), we obtain the boundary condition on the face z = 0−,[
cos(χzd)∂zHy + c−1χz sin(χzd)Hy

]
z=0−

= 0 (32)

which is a particular case of a general result obtained by Idemen [16] for a plane coated with
multi-layer sheets. Assuming χzd 
 1, the expression (32) becomes[

∂zHy + dε−1χ2
z Hy

]
z=0−

= 0 (33)

with according to (28a) and (29a) since k2
x = χ2

x

χ2
z = k2

z + (ε − 1)k2. (33a)

Then, denoting by ψ(u) the component Hy of the TM field we may write the boundary
condition (33) as

[∂zψ(u) + Nψ(u)]z=0− = 0 εN = d
[
k2
z + (ε − 1)k2

]
(34)

and we denote by G(u,u′) the Green function satisfying the same boundary condition

[∂zG(u,u′) + NG(u,u′)]z=0− = 0. (34a)

So, according to (7b) the Fredholm integral equation satisfied by the total field is

ψ(u) = −
∫ ∞

−∞
dx ′ [ψ(u′)∂z′G(u,u′)]z′=0 z � 0 (35)

and we have now to solve (35) which requires some method of approximation [6].
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3.1.2. Solution of the Fredholm integral equation. Setting γ = 0 in (21) gives

GN(u,u
′) = (i/π)

∫ ∞

−∞
dβ dγ k−1

z exp[iβ(x − x ′)]{exp[ikz|z − z′|] + exp[ikz|z + z′|]} (36)

such that [∂zGN)]z=0 = 0 so that

G(u,u′) = GN(u,u
′) exp(−N |z − z′|). (37)

To prove this result, one observes that since according to (22) [∂z|z − z′|]z=0 = 1 for z′ < 0
one has

[∂zG]z=0 = −N [G]z=0[∂z|z − z′|]z=0 (38)

which is the boundary condition (34a) and concludes the proof.
Now, ψ(u) is the total field ψi(u)+ψr(u), and introducing a new set of functions φi,r (u)

we may write the integral equation (35) with all the known terms on the right-hand side

ψr(u) + φr(u) = −[ψi(u) + φi(u)] z � 0 (39)

φi,r (u) =
∫ ∞

−∞
dx ′ [ψi,r (u

′)∂z′G(u,u′)]z′=0 z � 0 (39a)

and we obtain in appendix B the following expression for φi(u):

φi(u) = − exp(ikx sin θ) cos(kz cos θ)(1 + ib) exp(ikbz sin θ) z � 0 (40)

b = kd(ε sin θ)−1
(
ε − sin2 θ

)
(40a)

that we write in terms of the function h(b, z)

φi(u) = −2−1h(b, z)
[
ψi(u) + ψ(0)

r (u)
]

h(b, z) = (1 + ib) exp(kbz sin θ) (41)

in which ψ(0)
r is the field reflected according to the Descartes–Snell law,

ψ(0)
r (u) = exp[−iω/c(x sin θ − z cos θ)]. (41a)

As previously mentioned, we need some method of successive approximation [6] to solve the
Fredholm equation and the Rayleigh–Gans iterative process [1] is particularly suitable. So we
obtain from (39)

ψ(n)
r (u) = −[

ψi(u) + φi(u) + φ(n−1)
r (u)

]
z � 0 (42)

implying that the nth term in the iterative series is obtained by using the (n− 1)th term in the
expression (39a) of φr , while ψ(0)

r (u) is taken as an initial function to start the process and
since in this case b = 0 we obtain from (39a) and (40) (equation (39) reduces to a simple
identity for b = 0)

φ
(0)
i (u) = φ(0)r (u) = 2−1

[
ψi(u) + ψ(0)

r (u)
]
. (43)

So, for the first iteration, one obtains at once

ψ(1)
r (u) = −[

ψi(u) + φi(u) + φ(0)r (u)
]

z � 0. (44)

Substituting (43) and (41) into (42) gives with h written for h(b, z),

ψ(1)
r (u) = 2−1(1 + h)ψ(0)

r (u)− 2−1(1 − h)ψi(u) z � 0. (44a)

The second term is also easily obtained, since from (44a) we obtain

φ(1)r (u) = 2−1(1 + h)φ(0)r (u)− 2−1(1 − h)φi(u). (45)

Substituting (45) into (42) gives the following expression:

ψ(2)
r = −[

ψi + 2−1(1 + h)
(
φi + φ(0)r

)]
(46)
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Table 3. b = 10−2.

Reψ Im y

n π/4 π/3 π π/4 π/3 π

49 0.6657 0.4707 −0.9514 1.050 1.087 −0.4854
50 0.6640 0.4695 −0.9514 1.057 1.135 −0.4951

Table 4. b = 10−1.

Reψ Im y

n π/4 π/3 π π/4 π/3 π

49 −1.8631 −1.3174 2.6348 1.6682 1.5457 −1.3593
50 −1.9112 −1.3514 2.7028 1.6105 1.5048 −1.2775

Table 5. b = 5 × 10−1.

Reψ Im y

n π/4 π/3 π π/4 π/3 π

49 4.5764 3.2360 −6.4721 −2.6232 −1.4888 4.7098
50 5.4090 3.8247 −7.6495 −1.3023 −0.5548 2.8418

and still using (43) and (41), this expression becomes

ψ(2)
r = 2−2(1 + h)2ψ(0)

r − [
1 − 2−2(1 + h)2

]
ψi (46a)

so that the second iteration for φr is

φ(2)r = 2−2(1 + h)2φ(0)r − [
1 − 2−2(1 + h)2

]
φi (47)

which supplies ψ(3)
r and so on. The method for obtaining the nth term is clear and we obtain

ψ(n)
r = 2−n(1 + h)nψ(0)

r − [
1 − 2−n(1 + h)n

]
ψi (48)

but the convergence of this iterative process is still an open question. We remind the reader that
the expression (38) of φi(u) is valid for χzd 
 1, that is, in fact, for kd 
 1. The convergence
of (48) is numerically checked for ψ(z) = exp(iz) at z = π/4, π/3, π and b = 102, 10−1,
5 × 10−1, to n = 50. Tables 3–5 give Reψ and Imψ for n = 49 and 50.

So, the convergence for this numerical example requires b to be small, decreases when z
approaches π and is better for the real part than for the imaginary part of ψ .

Remark. In the conventional method, the integral equation (11b) gives

ψ(u) = ψi(u)−
∫ ∫ ∞

−∞
dx ′ dy ′ [ψs(u

′)∂z′gD(u,u
′)]z′=0

with gD(u,u
′) = gD(u,u

′) exp[−N(z − z′)] and gD(u,u′) given by (12) and (12a). When
ψi is not known on the impedance plane, the usual approach is to express the total field in
the medium of incidence in terms of an integral along the plane whose integrand contains the
value of the field on the plane. Then letting the point of observation tend to the plane yields an
inhomogeneous Fredholm integral equation of the second kind whose solution suppliesψs(u

′)
on the impedance plane.
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3.2. Acoustical spherical wave

3.2.1. Fredholm equation. We assume that an acoustical spherical wave impinges on a
plane characterized by an impedance Z(ω) that depends only on frequency [9]. Introducing a
parameter a with the dimension of (length)−1, we may write the boundary conditions as

[{∂z + iaZ(ω)}ψ(x)]z=0 = 0 [{∂z + iaGZ(x,x
′)}]z=0 = 0 (49)

and from now on, we write Z for Z(ω). The integral equation (7b) is still valid provided that
we change GN into GZ and we now prove (by introducing the function E(z, z′)) that GZ is

GZ(x,x
′) = GN(x,x

′)E(z, z′) (50)

E(z, z′) = exp(ia|z − z′|])U(z′ − z) + exp(−ia|z − z′|)U(z − z′) (50a)

in which U is the unit step function and we find at once for z = 0

[E(z, z′)]z=0 = exp(iaZz′) (51)

and with the relation already used in (22)

∂z|z − z′| =
{

1 z − z′ > 0

−1 z − z′ < 0
(52)

a simple calculation gives, since the Dirac distributions supplied by the derivatives of the unit
step functions cancel out,

∂zE(z, z
′) = −iaZE(z, z′) [∂zE(z, z

′)]z=0 = −iaZ exp(iaZz′). (53)

Then, taking into account (51), (53) and the relation [∂zGN(x,x
′)]z=0 = 0, the derivative of

(50) on z = 0 is

[∂zGZ(x,x
′)]z=0 = [GN(x,x

′)]z=0[∂zE(z, z
′)]z=0

= −iaZ[GZ(x,x
′)]z=0 (54)

which is the boundary condition (49) and justifies the expression (50) of GZ(x,x
′).

Now we need [∂z′GZ(x,x
′)]z′=0 that intervenes as the kernel in the integral equation, one

easily obtains

[E(z, z′)]z′=0 = exp(−iaZz) [∂z′E(z, z′)]z′=0 = iaZ exp(−iaZz) (55)

and a simple calculation gives

[∂z′G(x,x′)]z′=0 = exp(−iaZz)[∂z′GN(x,x
′) + iaZGN(x,x

′)]z′=0 (56)

so that the integral equation (7b) becomes

ψ(x) = −
∫ ∫ ∞

−∞
dx ′ dy ′ exp(−iaZz)[ψ(x′){∂z′GN(x,x

′) + iaZGN(x,x
′)]z′=0. (57)

Substituting (8a) and (A3) into (57) gives finally

4π2 exp(iaZz)ψ(x) =
∫ ∫ ∞

−∞
dβ dγ (1 + aZ/kz) cos(kzz) exp(iβx + iγy)H(β, γ ) (58)

H(β, γ ) =
∫ ∫ ∞

−∞
dx ′ dy ′ exp(−iβx ′ − iγy ′)[ψ(x ′)]z′=0 (58a)

in which according to (5) and (A1) in appendix A

ψ(x) = |x| exp(ik|x|) + ψr(x). (59)
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So, introducing the functions φ{ψi,r}, we may write the integral equation in the form

ψr(x)− φ{ψr} = −[ψi(x)− φ{ψi}] (60)

φ{ψi,r} = (4π2)−1 exp(−iaZz)[A{ψi,r} + aZC{ψi,r}] (60a)

in which the functions A and C are

A{ψi,r} =
∫ ∫ ∞

−∞
dβ dγ cos(kzz) exp(iβx + iγy)Hβ,γ {ψi,r} (61a)

C{ψi,r} =
∫ ∫ ∞

−∞
dβ dγ k−1

z cos(kzz) exp(iβx + iγy)Hβ,γ {ψi,r} (61b)

while the integrals Hβ,γ {ψi,r} are given by (58a)

Hβ,γ {ψi,r} =
∫ ∫ ∞

−∞
dx ′ dy ′ exp(−iβx ′ − iγy ′)[ψi,r (x

′)]z′=0. (62)

The functions A and C are made explicit in appendix C when ψi is the spherical wave (A1)
and we now have to look for the solution of the integral equation (60).

3.2.2. Solution of the Fredholm equation. We now look for the solution ψr(x) of the integral
equation (60) in the form

ψr(x) = ψ(0)
r (x) + χ(x) (63)

so that with the definition (60a) of the function φ we find

φ{ψr} = φ
{
ψ(0)
r

}
+ φ{χ}. (63a)

But from (A14) in appendix A, (C1) and (C3) in appendix C, we obtain

A
{
ψ(0)
r

} = A{ψi} C
{
ψ(0)
r

} = C{ψi} (64)

which implies the following simple relation:

φ
{
ψ(0)
r

} = φ{ψi} (64a)

so (63a) becomes

φ{ψr} = φ{ψi} + φ{χ}. (65)

Substituting (63), (65) and the definition (C1) of ψ(0) in appendix C, into (60) gives

χ(x)− φ{χ} = −ψ(0)(x) + 2φ{ψi} (66)

that we write using the relation (C4) of appendix C

χ(x)− φ{χ} = 4
{
ψ(0)

}
(67)

4
{
ψ(0)

} = (
α − 1 + αaZ∂−1

z◦
)
ψ(0)(x). (67a)

The solution of (67) can be obtained iteratively, still using the Rayleigh–Gans approximation,
with at the nth step

χ(n)(x) = φ
{
χ(n−1)

}
+ 4

{
ψ(0)

}
. (68)

It is shown in appendix D that the first iterated term for the impedance contribution to the
solution of equation (60) is with 4

{
ψ(0)

}
given by (67a),

χ(1)(x) = 4
{
ψ(0)

}
+ α(α − 1)

(
1 + α2aZ∂−1

z◦
)
ψ(0)(x)− iαaZ

(
1 + αaZ∂−1

z◦
)
∂−1
z◦ ψ

(0)(x)

(69)
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an expression that depends on aZ∂−1
z◦ ψ(0) and a2Z2∂−2

z◦ ψ(0). The calculation of the following
terms becomes rather tedious. But, as noted in [9], it is known [17] that the general reflection
of the sound field above an impedance plane due to a point source is not amenable to
easy computation. The difficulty is due to having to convert spherical waves into plane
harmonic waves for which impedance is defined. There only exist some asymptotically
expanded formulae [18, 19] in terms of a distance parameter formed by the horizontal
distance, wavenumber and impedance so that the Fredholm integral equation could improve
this situation.

4. Discussion

The Fredholm integral equation developed in this work to analyse scattering, in particular
on impedance planes, has many other applications, for instance in the case of cylindrical
obstacles [20] as well as for scattering by punctured planes leading to a new theory of diffraction
by plane apertures [21]. Let us insist on a problem close to that discussed here: the scattering of
a harmonic wave on a perfectly reflecting rough plane with a small roughness function f (x, y)
on the plane z = 0. Then, changing z′ = 0 into z′ = f (x ′, y ′) the integral equation (7b)
becomes

ψ(x) = −
∫ ∫ ∞

−∞
dx ′ dy ′ [ψ(x′)∂z′GN(x,x

′)]z′=f (x ′,y ′). (70)

Neglecting the terms |f (x ′, y ′)|n for n � 2, the Taylor series expansion of the integrand gives

[ψ(x′)∂z′GN(x,x
′)]z′=f (x ′,y ′) = χ0(x

′, y ′) + f (x ′, y ′)χ1(x
′, y ′) (70a)

where χ0(x
′, y ′) is the integrand of (7b) so that substituting (70a) into (70) gives

ψ(x) = ψ0(x)−
∫ ∫ ∞

−∞
dx ′ dy ′ χ1(x

′, y ′) f (x ′, y ′) (71)

in which ψ0(x) is the total field for reflection on a perfectly reflecting smooth plane, while
χ1(x

′, y ′) depends on the unknown field [ψ(x′)]z′=0. The Rayleigh–Gans method, still suitable
to obtain an approximation of (71), gives at the nth iteration

ψ(n)(x) = ψ0(x)−
∫ ∫ ∞

−∞
dx ′ dy ′ χ(n−1)

1 (x ′, y ′) f (x ′, y ′) (71a)

starting with ψ(0)(x) = ψ0(x). This formal calculation which illustrates once again the way
of using the Fredholm integral equation approach, requires a more rigorous development, in
particular ∂z′ must be replaced by the normal derivative ∂n′ to the rough plane, now in progress.
In addition, this simple scattering problem has the virtue of making possible an interesting
comparison with the conventional approach since then, the integral equation (11b) becomes
on a rough plane

ψ(x) = ψi(x)−
∫ ∫ ∞

−∞
dx ′ dy ′ [ψs(x

′)∂z′gD(x,x
′)]z′=f (x ′,y ′). (72)

Then, assuming that gD is the same as on a smooth plane, ψ(x) may be obtained by guessing
the form of ψs(x

′) [22, 23] on the plane z′ = f (x ′, y ′). For instance, in the case of periodic
surfaces, the surface field in the integrand of (72) is expanded in terms of a Fourier series [24]
which may be generalized to fractal surfaces [22], but this somewhat arbitrary choice also
leads to tedious calculations and the correctness of the results is not guaranteed. One may also
proceed as described in the remark of section 3.1.2.

The Fredholm integral formulation for scalar pulses, solutions of the wave equation and
for electromagnetic waves will be discussed later.
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Appendix A. Reflection of spherical waves on a mirror

We now consider a spherical wave ψi(x) launched by a source at the point (0, 0,−z0) in the
negative half-space z < 0 and impinging on a mirror in the plane z = 0,

ψi(x) = |x|−1 exp(ik|x|) |x|2 = x2 + y2 + (z + z0)
2. (A1)

By symmetry, the reflected field ψr(x) is a spherical wave originating from the image point
(0, 0, z0) in the half-space z > 0. So

ψr(x) = |y|−1 exp(ik|y|) |y|2 = x2 + y2 + (z − z0)
2. (A2)

We assume that the total fieldψ(x) satisfies the Neumann condition (6b), so we use the integral
equation (7b) with GN(x,x

′) given by (8a) and (9). Then, we have from (23)

[
4π2∂z′GN(x,x

′)
]
z′=0 = −

∫ ∫ ∞

−∞
dβ dγ exp[iβ(x − x ′) + iγ (y − y ′)] cos(kzz) (A3)

and according to the relations (A1) and (A2),

[ψi,r (x
′)]z′=0 = (

r2 + z2
0

)−1/2
exp

[
ik

(
r2 + z2

0

)1/2]
r2 = x ′ 2 + y ′ 2. (A4)

Taking into account (A3) and (A4), the integral equation (7b) may be written as

4π2
[
ψi(x) + ψr(x)

] = 2A(x) (A5)

where A(x) is defined in terms of the function B(β, γ ),

A(x) =
∫ ∫ ∞

−∞
dβ dγ cos(kzz) exp(iβx + iγy)B(β, γ ) (A6)

B(β, γ ) =
∫ ∫ ∞

−∞
dx ′ dy ′ (r2 + z2

0

)−1/2
exp

[−iβx ′ − iγy ′ + ik
(
r2 + z2

0

)1/2]
. (A7)

Introducing the polar coordinates x ′ = r cosφ, y ′ = r sin φ, the integral (A7) becomes

B(β, γ ) =
∫ ∞

0
r dr

(
r2 + z2

0

)−1/2
exp

[
ik

(
r2 + z2

0

)1/2] ∫ 2π

0
dφ exp[−ir(β cosφ + γ sin φ)]

= 2π
∫ ∞

0
r dr

(
r2 + z2

0

)−1/2
exp

[
ik

(
r2 + z2

0

)1/2]
J0

[
r
(
β2 + γ 2

)1/2]
(A8)

in which J0 is the Bessel function of the first kind of order zero. B(β, γ ) is an integral of the
Sonine–Gegenbauer type [12, 13] represented here by (A9),∫ ∞

0
t dt J0(bt)

(
t2 − y2

)−1/2
exp

[±a(t2 − y2
)1/2] = (

a2 + b2
)−1/2

exp
[±iy

(
a2 + b2

)1/2]
(A9)

the upper or lower sign is chosen accordingly as a < 0 or a > 0. But in (A8) a = ik is pure
imaginary, so to apply (A9) we change k into k + iε, making ε tend to zero in the final result.
So, we obtain

B(β, γ ) = 2iπ
(
k2 − β2 − γ 2

)−1/2
exp

[
iz0

(
k2 − β2 − γ 2

)1/2]
. (A10)
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Then, substituting (A10) into (A6) gives (since kz = (
k2 − β2 − γ 2

)1/2
)

A(x) = 2iπ
∫ ∫ ∞

−∞
dβ dγ k−1

z cos(kzz) exp(iβx + iγy + ikzz0). (A11)

Introducing the polar coordinates β = t cos θ , γ = t sin θ , the integral (A11) becomes

A(x) = 2iπ
∫ ∞

0
t dt

(
k2 − t2

)−1/2
exp

[
iz0

(
k2 − t2

)1/2]
cos

[
z
(
k2 − t2

)1/2]

×
∫ 2π

0
dθ exp[it (x cos θ + y sin θ)]

= 4iπ2
∫ ∞

0
t dt

(
k2 − t2

)−1/2
exp

[
iz0

(
k2 − t2

)1/2]
× cos

[
z
(
k2 − t2

)1/2]
J0

[
t
(
x2 + y2

)1/2]
= 2π2

∫ ∞

0
t dt

(
t2 − k2

)−1/2
f (t) J0

[
t
(
x2 + y2

)1/2]
(A12)

in which the function f (t) has the expression

f (t) = exp
[
(z0 + z)

(
t2 − k2

)1/2]
+ exp

[
(z0 − z)

(
t2 − k2

)1/2]
. (A13)

So, A(x) is the sum of two Sonine–Gegenbauer integrals (A9) with, respectively, a = z0 + z

and a = z0 − z with in both cases a < 0. Then, we obtain from (A9) and (A12) with |x|, |y|
defined by (A1) and (A2),

A(x) = 2π2
[|x| exp(ik|x|) + |y| exp(ik|y|)] = 2π

[
ψi(x) + ψr(x)

]
(A14)

in agreement with (A5) which proves the consistency of the Fredholm equation.

Appendix B. Calculation of φi(u)

According to the relations (36) and (37) in the main text

4πG(u,u′) = i
∫ ∞

−∞
dβ k−1

z exp[iβ(x − x ′)]{exp(ikz|z − z′|) + exp(ikz|z + z′|)}

× exp(−N |z − z′|) (B1)

and taking into account (23), a simple calculation gives

2π [∂z′G(u,u′)]z′=0 = −
∫ ∞

−∞
dβ exp[iβ(x − x ′)] cos(kzz)

(
1 + iNk−1

z

)
exp(Nz) z < 0

(B2)

with according to (26)

[ψi(u
′)]z′=0 = exp(−ikx ′ sin θ). (B3)

Then, substituting (B2) and (B3) into (39a) and exchanging the integrals on x ′ and on β gives

φi(u) = −(2π)−1
∫ ∞

−∞
dβ exp(iβx) cos(kzz)

(
1 + iNk−1

z

)
exp(Nz)

×
∫ ∞

−∞
dx ′ exp[−ix ′(β + k sin θ)]

= −
∫ ∞

−∞
dβ δ(β + k sin θ) exp(iβx) cos(kzz)

(
1 + iNk−1

z

)
exp(Nz) z � 0

(B4)
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in which δ is the Dirac distribution and finally since k2
z = k2 − β2, N = dε−1(εk2 − β2), we

obtain

φi(u) = exp(−ikx sin θ) cos(kz cos θ)
[
1 + ikd(ε sin θ)−1

(
ε − sin2 θ

)]
× exp

[
k2zdε−1

(
ε − sin2 θ

)]
. (B5)

Appendix C. Calculation of the functions (61a) and (61b)

The functions (61a) and (61b) are defined by the integrals

A{ψi,r} =
∫ ∫ ∞

−∞
dβ dγ cos(kzz) exp(iβx + iγy)Hβ,γ {ψi,r} (61a)

C{ψi,r} =
∫ ∫ ∞

−∞
dβ dγ k−1

z cos(kzz) exp(iβx + iγy)Hβ,γ {ψi,r}. (61b)

When ψi is the spherical wave (A1) of appendix A, we have Hβ,γψi} = B(β, γ ), where
B(β, γ ) is the function (A7) so that substituting (A9) into (61a) gives the expression (A14)
which we write as

A{ψi} = 2π2ψ(0)(x) ψ(0)(x) = ψi(x) + ψ(0)
r (x) (C1)

with ψ(0)
r denoting the reflected field (A2) at a perfectly reflecting smooth plane. Substituting

(A10) into (61b) and still using the polar coordinates β = t cos θ , γ = t sin θ we obtain

C{ψi} = 2π2
∫ ∞

0
t dt

(
t2 − k2

)−1
f (t) J0

[
t
(
x2 + y2

)1/2]
(C2)

which is the integral (A12) except that
(
t2 −k2

)−1/2
in front of f (t) is changed into

(
t2 −k2

)−1
.

But, taking into account the definition (A13) of f (t), one easily obtains from the derivative
∂z◦f (t) the relation (for typographical reasons we write z◦ for z0) A{ψi} = ∂z◦C{ψi}. Then,
according to the relation (C1) and introducing the antiderivative (primitive) symbol ∂−1

z◦ we
obtain

C{ψi} = 2π2∂−1
z◦ ψ

(0)(x). (C3)

Finally, substituting (C1) and (C2) into (60a) gives

2φ{ψi} = α
(
1 + aZ∂−1

z◦
)
ψ(0)(x) α = exp(−iaZz) (C4)

which determines the right-hand side of (60).

Appendix D. First iterated term of the Rayleigh–Gans process

Starting with χ(0)(x) = 4
{
ψ(0)

}
we obtain for the first step of the iterative process (68)

χ(1)(x) = φ{4} + 4
{
ψ(0)

}
(D1)

with according to (67a) (since from the relations (60)–(62) φ(ψ1 + ψ2) = φ(ψ1) + f (ψ2)),

φ{4} = (α − 1)φ
{
ψ(0)

}
+ αaZφ

{
∂−1
z◦ ψ

(0)
}
. (D2)

Then, we obtain from (64a) and from the relation (C4) of appendix C,

φ{ψ(0)} = 2φ{ψi} = α
(
1 + αaZ∂−1

z◦
)
ψ(0) (D3)
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while to obtain the second term in (D3) we first need to calculate Hβ,γ {∂−1
z◦ ψ(0)}. Still using

the relation [ψ(0)]z′=0 = 2[ψi]z′=0 and exchanging the integrations on x ′, y ′ and on z0, we
obtain from (62) and from the relation (A10) of appendix A

Hβ,γ

{
∂−1
z◦ ψ

(0)
} = 2∂−1

z◦ Hβ,γ {ψi} = 2∂−1
z◦ B(β, γ )

= −2ik−1
z B(β, γ ). (D4)

Substituting (D4) into (61a) and (61b) gives

A
{
∂−1
z◦ ψ

(0)
} = −2i

∫ ∫ ∞

−∞
dβ dγ k−2

z cos(kzz) exp(iβx + iγy)B(β, γ )

C
{
∂−1
z◦ ψ

(0)
} = −2i

∫ ∫ ∞

−∞
dβ dγ k−3

z cos(kzz) exp(iβx + iγy)B(β, γ ).
(D5)

Using the expression (A10) of B(β, γ ) and the polar coordinates β = t cos θ , γ = t sin θ
the integrals (D5) take the form (A12) with the factor

(
t2 − k2

)−1/2
in front of f (t) changed,

respectively, into
(
t2 − k2

)−1
and

(
t2 − k2

)−3/2
. Then, taking the first and second derivatives

with respect to z0 of f (t), we obtain according to (A13) and (C1),

A
{
∂−1
z◦ ψ

(0)
} = −2i∂−1

z◦ A{ψi} = −4iπ2∂−1
z◦ ψ

(0) (D6)

C
{
∂−1
z◦ ψ

(0)
} = −2i∂−2

z◦ A{ψi} = −4iπ2∂−2
z◦ ψ

(0). (D7)

Substituting (D6) and (D7) into (60a) gives

φ
{
∂−1
z◦ ψ

(0)
} = −iα

(
1 + iαaZ∂−1

z◦
)
∂−1
z◦ ψ

(0) (D8)

and from (D2), (D3) and (D8) we obtain

φ{χ(0)} = α(α − 1)
(
1 + αaZ∂−1

z◦
)
ψ(0) − iα2aZ

(
1 + αaZ∂−1

z◦
)
∂−1
z◦ ψ

(0). (D9)

So, according to (D1) and (D9), the first iterated term for the impedance contribution to the
solution of equation (60) is with 4

{
ψ(0)

}
given by (67a),

χ(1)(x) = 4
{
ψ(0)

}
+ α(α − 1)

(
1 + α2aZ∂−1

z◦
)
ψ(0)(x)− iαaZ

(
1 + αaZ∂−1

z◦
)
∂−1
z◦ ψ

(0)(x)

(D10)

an expression that depends on aZ∂−1
z◦ ψ(0) and a2Z2∂−2

z◦ ψ(0).
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